siemens x
能效管理

利用噪聲頻譜密度評(píng)估軟件定義系統(tǒng)中的ADC

2025China.cn   2020年12月30日

        不斷豐富的高速和極高速ADC以及數(shù)字處理產(chǎn)品正使過(guò)采樣成為寬帶和射頻系統(tǒng)的實(shí)用架構(gòu)方法。半導(dǎo)體技術(shù)進(jìn)步為提升速度以及降低成本做出了諸多貢獻(xiàn)(比如價(jià)格、功耗和電路板面積),讓系統(tǒng)設(shè)計(jì)人員得以探索轉(zhuǎn)換和處理信號(hào)的各種方法——無(wú)論使用具有平坦噪聲頻譜密度的寬帶轉(zhuǎn)換器,或是使用在目標(biāo)頻段內(nèi)具有高動(dòng)態(tài)范圍的帶限Σ-Δ型轉(zhuǎn)換器。這些技術(shù)改變了設(shè)計(jì)工程師對(duì)信號(hào)處理的認(rèn)識(shí),以及他們定義產(chǎn)品規(guī)格的方式。
        噪聲頻譜密度(NSD)及其在目標(biāo)頻段內(nèi)的分布,能夠讓其在數(shù)據(jù)轉(zhuǎn)換過(guò)程中更好的被濾除.。
        比較在不同速度下工作的系統(tǒng),或者查看軟件定義系統(tǒng)如何處理不同帶寬的信號(hào)時(shí),噪聲頻譜密度(NSD)可以說(shuō)比信噪比(SNR)更為有用。它不能取代其他規(guī)格,但會(huì)是分析工具箱中的一個(gè)有用參數(shù)指標(biāo)。

我的目標(biāo)頻段內(nèi)有多少噪聲?
        數(shù)據(jù)轉(zhuǎn)換器數(shù)據(jù)手冊(cè)上的SNR表示滿(mǎn)量程信號(hào)功率與其他所有頻率的總噪聲功率之比。

圖1. 9 dB調(diào)制增益的圖形表示:保留全部信號(hào),丟棄7?8噪聲。
        現(xiàn)在考慮一個(gè)簡(jiǎn)單情況來(lái)比較SNR和NSD,如圖1所示。假設(shè)ADC時(shí)鐘頻率為75 MHz。對(duì)輸出數(shù)據(jù)運(yùn)行快速傅里葉變換(FFT),圖中顯示的頻譜為從直流到37.5 MHz。本例中,目標(biāo)信號(hào)是唯一的大信號(hào),且碰巧位于2 MHz附近。對(duì)于白噪聲(大部分情況下包含量化噪聲和熱噪聲)而言,噪聲均勻分布在轉(zhuǎn)換器的奈奎斯特頻段內(nèi),本例中為直流至37.5 MHz。
        由于目標(biāo)信號(hào)在直流與4 MHz之間,故可相對(duì)簡(jiǎn)單地應(yīng)用數(shù)字后處理以濾除或拋棄一切高于4 MHz的頻率(僅保留紅框中的內(nèi)容)。這里將需要丟棄7?8噪聲,保留所有信號(hào)能量,從而有效SNR改善9 dB。換句話(huà)說(shuō),如果知道信號(hào)位于頻段的一半中,那么事實(shí)上可以在僅消除噪聲的同時(shí),丟棄另一半頻段。
        這就引出了一條有用的經(jīng)驗(yàn)法則:存在白噪聲時(shí),調(diào)制增益可使過(guò)采樣信號(hào)的SNR額外改善3 dB/倍頻程。在圖1示例中,可將此技巧應(yīng)用到三個(gè)倍頻程中(系數(shù)為8),從而使SNR改善9 dB。
        當(dāng)然,如果信號(hào)處于直流和4 MHz之間某處,那么就不需要使用快速75 MSPS ADC來(lái)捕捉信號(hào)。只需9 MSPS或10 MSPS便能滿(mǎn)足奈奎斯特采樣定理對(duì)帶寬的要求。事實(shí)上,可以對(duì)75 MSPS采樣數(shù)據(jù)進(jìn)行1/8抽取,產(chǎn)生9.375 MSPS有效數(shù)據(jù)速率,同時(shí)保留目標(biāo)頻段內(nèi)的噪底。
        正確進(jìn)行抽取很重要。如果只是每8個(gè)樣本丟棄7個(gè),那么噪聲會(huì)折疊或混疊回到目標(biāo)頻段內(nèi),這樣將得不到任何SNR改善。必須先濾波再抽取,才能實(shí)現(xiàn)調(diào)制增益。
        即便如此,雖然理想的濾波器會(huì)消除一切噪聲,實(shí)現(xiàn)理想3 dB/倍頻程的調(diào)制增益,但實(shí)際濾波器不具備此類(lèi)特性。在實(shí)踐中,所需的濾波器阻帶抑制量與試圖實(shí)現(xiàn)多少調(diào)制增益成函數(shù)關(guān)系。另外應(yīng)注意,“3 dB/倍頻程”的經(jīng)驗(yàn)法則是基于白噪聲假設(shè)。這是一個(gè)合理的假設(shè),但并非適用于一切情況。
        一個(gè)重要的例外情況是動(dòng)態(tài)范圍受非線(xiàn)性誤差或通帶中的其他雜散交調(diào)分量影響。在這些情況下,“濾波并丟棄”方法不一定能濾除雜散分量,可能需要更細(xì)致的頻率算法。

將SNR和采樣速率轉(zhuǎn)換為噪聲頻譜密度
        當(dāng)頻譜中存在多個(gè)信號(hào)時(shí),比如FM頻段內(nèi)有許多電臺(tái),情況會(huì)變得愈加復(fù)雜。若要恢復(fù)任一信號(hào),更重要的不是數(shù)據(jù)轉(zhuǎn)換器的總噪聲,而是落入目標(biāo)頻段內(nèi)的轉(zhuǎn)換器噪聲量。這就需要通過(guò)數(shù)字濾波和后處理來(lái)消除所有帶外噪聲。
        有多種方法可以減少落入紅框內(nèi)的噪聲量。其中一種是選擇具有更好SNR(噪聲更低)的ADC。或者也可以使用相同SNR的ADC并提供更快的時(shí)鐘(比如150 MHz),從而讓噪聲分布在更寬的帶寬內(nèi),使紅框內(nèi)的噪聲更少。

NSD進(jìn)入視野
        這就提出了一個(gè)新問(wèn)題:如要快速比較轉(zhuǎn)換器濾除噪聲的性能,有沒(méi)有比SNR更好的規(guī)格?
        此時(shí)就會(huì)用到噪聲頻譜密度(NSD)。用頻譜密度(通常以相對(duì)于每赫茲帶寬的滿(mǎn)量程的分貝數(shù)為單位,即dBFS/Hz)來(lái)刻畫(huà)噪聲,便可比較不同采樣速率的ADC,從而確定哪個(gè)器件在特定應(yīng)用中可能具有最低噪聲。
        表1以一個(gè)70 dB SNR的數(shù)據(jù)轉(zhuǎn)換器為例,說(shuō)明隨著采樣速率從100 MHz提高到2 GHz,NSD有何改善。
表1.改變一個(gè)70 dB SNR的ADC的采樣速率

        表2顯示了部分極為不同的轉(zhuǎn)換器的多種SNR和采樣速率組合,但所有組合都具有相同的NSD,因此每一種組合在1 MHz通道內(nèi)都將具有相同的總噪聲。注意,轉(zhuǎn)換器的實(shí)際分辨率可能遠(yuǎn)高于有效位數(shù),因?yàn)楹芏噢D(zhuǎn)換器希望具有額外的分辨率以確保量化噪聲對(duì)NSD的影響可忽略不計(jì)。
表2.幾種極為不同的轉(zhuǎn)換器均在1 MHz帶寬內(nèi)提供95 dB SNR;SNR計(jì)算假定為白噪底(無(wú)雜散影響)

        在一個(gè)傳統(tǒng)的單載波系統(tǒng)中,使用10 GSPS轉(zhuǎn)換器捕捉1 MHz信號(hào)似乎很滑稽,但在多載波軟件定義系統(tǒng)中,那可能是設(shè)計(jì)人員恰恰會(huì)做的事情。一個(gè)例子是有線(xiàn)機(jī)頂盒,其可能采用2.7 GSPS至3 GSPS全頻調(diào)諧器來(lái)捕捉包含數(shù)百電視頻道的有線(xiàn)信號(hào),每個(gè)頻道的帶寬為數(shù)MHz。對(duì)于數(shù)據(jù)轉(zhuǎn)換器而言,噪聲頻譜密度的單位通常為dBFS/Hz,即相對(duì)于每Hz滿(mǎn)量程的dB。這是一種相對(duì)量度,提供了對(duì)噪聲電平的某種“折合到輸出端”測(cè)量。還有采用dBm/Hz甚至dB mV/Hz為單位來(lái)提供更為絕對(duì)的量度,即對(duì)數(shù)據(jù)轉(zhuǎn)換器噪聲的“折合到輸入端”測(cè)量。
        SNR、滿(mǎn)量程電壓、輸入阻抗和奈奎斯特帶寬也可用來(lái)計(jì)算ADC的有效噪聲系數(shù),但這涉及到相當(dāng)復(fù)雜的計(jì)算,參見(jiàn)ADI公司指南MT-006:“ADC噪聲系數(shù)——一個(gè)經(jīng)常被誤解的參數(shù)”。

過(guò)采樣替代方法
        在較高的采樣速率下使用ADC通常意味著較高的功耗——無(wú)論是ADC自身抑或后續(xù)數(shù)字處理。表1顯示過(guò)采樣對(duì)NSD有好處,但問(wèn)題依然存在:“過(guò)采樣真的值得嗎?”
        如表2所示,使用噪聲較低的轉(zhuǎn)換器也能實(shí)現(xiàn)更好的NSD。捕捉多載波的系統(tǒng)需要工作在較高采樣速率下,因此會(huì)對(duì)每個(gè)載波進(jìn)行過(guò)采樣。不過(guò),過(guò)采樣仍有很多優(yōu)勢(shì)。
        簡(jiǎn)化抗混疊濾波——過(guò)采樣會(huì)將較高頻率的信號(hào)(和噪聲)混疊到轉(zhuǎn)換器的奈奎斯特頻段內(nèi).所以為了混疊影響,這些信號(hào)需要在AD轉(zhuǎn)換前被濾波器濾除。這意味著過(guò)濾器的過(guò)渡帶必須位于最高目標(biāo)捕捉頻率(FIN)和該頻率的混疊(FSAMPLE、FIN)之間。隨著FIN越來(lái)越接近FSAMPLE/2,此抗混疊濾波器的過(guò)渡帶變得非常窄,需要極高階的濾波器。2至4倍過(guò)采樣可大幅減少模擬域中的這個(gè)限制,并將負(fù)擔(dān)置于相對(duì)容易處理的數(shù)字域中。
        即便使用完美的抗混疊濾波器,要最大程度減少轉(zhuǎn)換器失真產(chǎn)物折疊的影響也會(huì)帶來(lái)不足,在ADC中產(chǎn)生雜散和其他失真產(chǎn)物,包括某些極高階諧波。這些諧波還將在采樣頻率內(nèi)折疊,可能返回帶內(nèi),限制目標(biāo)頻段內(nèi)的SNR。在較高的采樣速率下,所需頻段成為奈奎斯特帶寬的一小部分,因而降低了折疊發(fā)生的概率。值得一提的是,過(guò)采樣還有助于可能發(fā)生帶內(nèi)折疊的其他系統(tǒng)雜散(比如器件時(shí)鐘源)的頻率規(guī)劃。
        調(diào)制增益對(duì)任何白噪聲都有影響,包括熱噪聲和量化噪聲,以及來(lái)自某些類(lèi)型時(shí)鐘抖動(dòng)的噪聲。
        隨著速度更高的轉(zhuǎn)換器和數(shù)字處理產(chǎn)品的成熟,系統(tǒng)設(shè)計(jì)人員更頻繁地使用一定量的過(guò)采樣以發(fā)揮這些優(yōu)勢(shì),比如噪底和FFT。

圖2. 524,288樣本FFT和8192樣本FFT的ADC
        用戶(hù)可能很希望通過(guò)檢查頻譜曲線(xiàn)以及查看噪底深度來(lái)比較轉(zhuǎn)換器,如圖2所示。進(jìn)行此類(lèi)比較時(shí),重要的是需記住頻譜曲線(xiàn)取決于快速傅里葉變換的大小。較大的FFT會(huì)將帶寬分成更多的頻率倉(cāng),每個(gè)頻率倉(cāng)內(nèi)累積的噪聲會(huì)變少。這種情況下,頻譜曲線(xiàn)會(huì)顯示較低的噪底,但這只是一個(gè)繪圖偽像。事實(shí)上,噪聲頻譜密度并未發(fā)生改變(這是改變頻譜分析儀分辨率帶寬的信號(hào)處理等效情況)。
        最終,如果采樣速率等于FFT大小(或者成適當(dāng)比例),那么比較噪底是可以接受的,否則可能產(chǎn)生誤解。這里,NSD規(guī)格可用于直接比較。

當(dāng)噪底不平坦時(shí)
        到目前為止,關(guān)于調(diào)制增益和過(guò)采樣的討論都假設(shè)噪聲在轉(zhuǎn)換器的奈奎斯特頻帶內(nèi)是平坦的。這在很多情況下是一個(gè)合理的近似,但也有某些情況不適用該假設(shè)。
        例如,之前已經(jīng)提到調(diào)制增益并不適用于雜散,雖然過(guò)采樣系統(tǒng)在頻率規(guī)劃和雜散處理方面可能有一些優(yōu)勢(shì)。此外,1/f噪聲和部分類(lèi)型的振蕩器相位噪聲具有頻譜整形性能,調(diào)制增益計(jì)算不適用于此類(lèi)情況。

圖3.目標(biāo)頻段和噪聲整形

        噪聲不平坦的一個(gè)重要情形是使用Σ-Δ型轉(zhuǎn)換器時(shí)。
        Σ-Δ型調(diào)制器通過(guò)對(duì)反饋回路(量化器輸出)調(diào)制,進(jìn)而實(shí)現(xiàn)對(duì)量化噪聲整形,從而降低目標(biāo)頻段內(nèi)的噪聲,但代價(jià)是增加帶外噪聲,如圖3所示。
        即使不進(jìn)行完整分析,也可以看到,對(duì)于Σ-Δ型調(diào)制器,使用NSD作為確定帶內(nèi)可用動(dòng)態(tài)范圍的規(guī)格尤為有效。圖4顯示的是高速帶通Σ-Δ型ADC放大后的噪底曲線(xiàn)。在75 MHz目標(biāo)頻段內(nèi)(中心頻率為225 MHz),噪聲為-160 dBFS/Hz左右,SNR超過(guò)74 dBFS。

圖4.AD6676—噪底

一個(gè)總結(jié)性范例
        為了總結(jié)并強(qiáng)化我們已經(jīng)討論過(guò)的內(nèi)容,現(xiàn)在看圖5所示曲線(xiàn)。本例考慮五款A(yù)DC:一款12位、2.5 GSPS ADC(紫色曲線(xiàn));一款14位、1.25 GSPS ADC,時(shí)鐘速度分別為500 MSPS(紅色曲線(xiàn));和1 GSPS(綠色曲線(xiàn));一款14位、3 GSPS ADC,時(shí)鐘速度為3 GSPS(灰色曲線(xiàn));一款不同的14位、500 MSPS ADC,時(shí)鐘速度為500 MSPS(藍(lán)色曲線(xiàn));最后是圖4提到的帶通Σ-Δ型ADC。前五種情況的特征是具有近乎白色(平坦)的噪底,而Σ-Δ型ADC具有浴盆形噪聲頻譜密度,在目標(biāo)頻段內(nèi)的噪聲很低,如圖4所示。
        在每種情況中,采樣速率保持固定,通過(guò)改變數(shù)字濾波器(其移除數(shù)字化處理后的帶外噪聲)的截止頻率來(lái)掃描信號(hào)帶寬。由此可得出幾點(diǎn)結(jié)論。
        首先,降低信號(hào)帶寬會(huì)提高動(dòng)態(tài)范圍。然而,紫色、紅色和綠色直線(xiàn)的斜率始終為3 dB/倍頻程,因?yàn)槠銷(xiāo)SD曲線(xiàn)是平坦的。藍(lán)色曲線(xiàn)的斜率(Σ-Δ型ADC)則相當(dāng)陡峭。當(dāng)在通道的陡坡上掃描抽取濾波器的截止頻率時(shí),上述現(xiàn)象尤其明顯,因?yàn)樵擃l率的每次遞增/遞減都會(huì)導(dǎo)致濾除的噪聲功率量迅速變化。
        其次,各曲線(xiàn)具有不同的垂直偏移,這取決于轉(zhuǎn)換器的NSD。例如,紅色和綠色曲線(xiàn)對(duì)應(yīng)相同的ADC。但綠色曲線(xiàn)(1 GSPS)高于紅色曲線(xiàn)(500 MSPS),因?yàn)槠銷(xiāo)SD比其他情況低3 dB/Hz,其時(shí)鐘是紅色曲線(xiàn)的兩倍。
        圖5顯示了多種不同高速ADC的SNR與信號(hào)帶寬的權(quán)衡關(guān)系:五個(gè)斜率遵從平坦噪底的3 dB/倍頻程調(diào)制增益,而AD6676由于噪底整形而表現(xiàn)出更陡的調(diào)制增益。

圖5.不同ADC的SNR與信號(hào)帶寬的關(guān)系

結(jié)語(yǔ)
        不斷豐富的高速和極高速ADC以及數(shù)字處理產(chǎn)品正使過(guò)采樣成為寬帶和射頻系統(tǒng)的實(shí)用架構(gòu)方法。半導(dǎo)體技術(shù)進(jìn)步為提升速度以及降低成本做出了諸多貢獻(xiàn)(比如價(jià)格、功耗和電路板面積),讓系統(tǒng)設(shè)計(jì)人員得以探索轉(zhuǎn)換和處理信號(hào)的各種方法——無(wú)論使用具有平坦噪聲頻譜密度的寬帶轉(zhuǎn)換器,或是使用在目標(biāo)頻段內(nèi)具有高動(dòng)態(tài)范圍的帶限Σ-Δ型轉(zhuǎn)換器。這些技術(shù)改變了我們對(duì)信號(hào)處理的認(rèn)識(shí),以及我們定義產(chǎn)品規(guī)格的方式。思考如何捕捉信號(hào)時(shí),工程師可能會(huì)想到去比較在不同速度下工作的系統(tǒng)。進(jìn)行這類(lèi)比較,或者查看軟件定義系統(tǒng)如何處理不同帶寬的信號(hào)時(shí),噪聲頻譜密度可以說(shuō)比SNR更為有用。它不能取代其他規(guī)格,但會(huì)是規(guī)格列表上非常有用的一個(gè)目。

(轉(zhuǎn)載)

標(biāo)簽:噪聲頻譜密度 ADC 我要反饋 
2024世界人工智能大會(huì)專(zhuān)題
即刻點(diǎn)擊并下載ABB資料,好禮贏不停~
優(yōu)傲機(jī)器人下載中心
西克
2024全景工博會(huì)
專(zhuān)題報(bào)道
2024 工博會(huì) | 直播探館 · 全景解讀
2024 工博會(huì) | 直播探館 · 全景解讀

第二十四屆中國(guó)工博會(huì)于9月24日至28日在國(guó)家會(huì)展中心(上海)舉行,展會(huì)以“工業(yè)聚能 新質(zhì)領(lǐng)航”為全新主題。 [更多]

2024世界人工智能大會(huì)
2024世界人工智能大會(huì)

WAIC 2024將于7月在上海舉行,論壇時(shí)間7月4日-6日,展覽時(shí)間7月4日-7日。WAIC 2024將圍繞“以共商促... [更多]

2024漢諾威工業(yè)博覽會(huì)專(zhuān)題
2024漢諾威工業(yè)博覽會(huì)專(zhuān)題

2024 漢諾威工業(yè)博覽會(huì)將于4月22 - 26日在德國(guó)漢諾威展覽中心舉行。作為全球首屈一指的工業(yè)貿(mào)易展覽會(huì),本屆展覽會(huì)... [更多]