結(jié)合集成動力總成系統(tǒng),助您實現(xiàn)低成本、更可靠的下一代電動汽車設(shè)計!
用更少的器件實現(xiàn)更多的汽車應(yīng)用,既能減輕車重、降低成本,又能提高可靠性。這是集成電動汽車(EV)和混合動力汽車(HEV)設(shè)計背后的理念。
什么是集成動力總成?
集成動力總成旨在將車載充電器(OBC)、高壓直流/直流(HV DCDC)轉(zhuǎn)換器、逆變器和配電單元(PDU)等終端設(shè)備結(jié)合到一起。機械、控制或動力總成級別均可進行集成,如圖1所示。
圖1:電動汽車典型架構(gòu)概述
為什么動力總成集成有利于混合動力汽車/電動汽車?
集成動力總成終端設(shè)備組件能夠?qū)崿F(xiàn)以下優(yōu)勢:
● 提高功率密度;
● 提高可靠性;
● 優(yōu)化成本;
● 簡化設(shè)計和組裝,并支持標準化和模塊化。
市場應(yīng)用現(xiàn)狀
實現(xiàn)集成動力總成的方法有很多。圖2以車載充電器和高壓直流/直流轉(zhuǎn)換器集成為例,簡要介紹了用于在結(jié)合動力總成、控制電路和機械組件時實現(xiàn)高功率密度的四種常見方法。它們分別是:
● 方法1:形成獨立的系統(tǒng)。這種方法已不如幾年前流行。
● 方法2:可分為兩個步驟:
● 直流/直流轉(zhuǎn)換器和車載充電器共享機械外殼,但擁有各自獨立的冷卻系統(tǒng)。
● 同時共享外殼和冷卻系統(tǒng)(最常選用的方法)。
● 方法3:進行控制級集成。這種方法正在演變?yōu)榈?種方法。
● 方法4:相比于其他三種方法,此方法由于減少了電源電路中的電源開關(guān)和磁性元件,所以成本優(yōu)勢更大,但它的控制算法也更復(fù)雜。
圖2:車載充電器和直流/直流轉(zhuǎn)換器集成的四種常見方法
表1概括了目前市場上的集成架構(gòu):
表1:集成動力總成的三種成功實現(xiàn)
動力總成集成方框圖
圖3為一個動力總成的方框圖,該動力總成實現(xiàn)了電源開關(guān)共享和磁集成的架構(gòu)。
圖3:集成架構(gòu)中的電源開關(guān)和磁性組件共享
如圖3所示,車載充電器和高壓直流/直流轉(zhuǎn)換器都連接至高壓電池,因此車載充電器和高壓直流/直流轉(zhuǎn)換器的全橋額定電壓相同。這樣,便可以通過全橋使得車載充電器和高壓直流/直流轉(zhuǎn)換器實現(xiàn)電源開關(guān)共享。
此外,將圖3所示的兩個變壓器集成在一起還可以實現(xiàn)磁集成。這是因為它們在高壓側(cè)的額定電壓相同,能夠最終形成三端變壓器。
性能提升
圖4展示了如何通過內(nèi)置降壓轉(zhuǎn)換器來幫助提升低壓輸出的性能。
圖4:提升低壓輸出的性能
當這個集成拓撲在高壓電池充電條件下工作時,高壓輸出可得到精確控制。但是,由于變壓器的兩個端子耦合在一起,所以低壓輸出的性能會受到限制。有一個簡單的方法可以提升低壓輸出性能,那就是添加一個內(nèi)置降壓轉(zhuǎn)換器。但這樣做的代價就是會導(dǎo)致成本增加。
共享組件
像車載充電器和高壓直流/直流轉(zhuǎn)換器集成一樣,車載充電器中的功率因數(shù)校正級和三個半橋的額定電壓非常接近。這樣,便可以通過由兩個終端設(shè)備組件共享的三個半橋來實現(xiàn)電源開關(guān)共享,如圖5所示。這可以降低成本并提高功率密度。
圖5:動力總成集成設(shè)計中的組件共享
由于一個電機一般有三個繞組,因此也可以將這些繞組用作車載充電器中的功率因數(shù)校正電感器,借此實現(xiàn)磁集成。這也有助于降低設(shè)計成本和提高功率密度。
結(jié)束語
從低級別的機械集成到高級別的電子集成,集成的發(fā)展仍在繼續(xù)。隨著集成級別的提高,系統(tǒng)的復(fù)雜性也將增加。但是,每種架構(gòu)變體都會帶來不同的設(shè)計挑戰(zhàn),包括:
● 為進一步優(yōu)化性能,必須精心設(shè)計磁集成。
● 采用集成系統(tǒng)時,控制算法會更加復(fù)雜。
● 設(shè)計高效的冷卻系統(tǒng),以適應(yīng)更小型系統(tǒng)的散熱需求。
靈活性是動力總成集成的關(guān)鍵。眾多方法任您選擇,您可以任意地探索各種級別的集成設(shè)計。
(轉(zhuǎn)載)