智能汽車

智能駕駛丨自動(dòng)駕駛深度感知技術(shù)對(duì)車和行人的檢測

ainet.cn   2020年11月25日

  今天我主要想分享自動(dòng)駕駛感知技術(shù)在探索的過程中,采用的傳統(tǒng)方法和深度學(xué)習(xí)方法。傳統(tǒng)方法不代表多傳統(tǒng),深度學(xué)習(xí)也不代表多深度。它們有各自的優(yōu)點(diǎn),也都能解決各自的問題,最終希望將其結(jié)合起來,發(fā)揮所有方法的優(yōu)點(diǎn)。

一、感知系統(tǒng)簡介

  首先介紹下感知系統(tǒng)。感知可以被看作是對(duì)周圍世界建模的過程,比如車輛在行駛過程中,需要知道其他物體的地理位置、速度、運(yùn)動(dòng)方向、加速度等各種各樣的信息,自動(dòng)駕駛系統(tǒng)接收這些信息之后,再通過后續(xù)的規(guī)劃和控制模塊來對(duì)車的運(yùn)動(dòng)做真正的調(diào)節(jié)。

  感知可以類比為人類眼睛的功能,即觀察周圍世界的能力:

  ◆ 采用的傳感器:激光雷達(dá)、照相機(jī)、毫米波雷達(dá)等。

  ◆ 幀信號(hào)處理:多傳感器深度融合、物體分割、物體檢測、物體分類。

  ◆ 物體追蹤:當(dāng)有多幀信息之后,可以推算速度、加速度、方向等更有意義的信息,甚至可以用多幀的信息調(diào)整物體分割的結(jié)果。

  ◆ 道路特征分析:對(duì)道路特征進(jìn)行理解,比如交通信號(hào)燈、交通指示牌等。

  感知可以認(rèn)為是自動(dòng)駕駛系統(tǒng)的基礎(chǔ)部分,假如感知不到這個(gè)世界,就談不上對(duì)這個(gè)世界做出反應(yīng),更談不上后續(xù)的路徑規(guī)劃和車輛控制的過程。

二、2D物體檢測

  我今天主要介紹關(guān)于物體檢測部分,因?yàn)楸仨毾扔辛藴?zhǔn)確的物體檢測和分割結(jié)果,我們才能對(duì)物體做出準(zhǔn)確的分類、追蹤等。我首先介紹下2D物體檢測。

  2D物體檢測是指以2D信息作為輸入(input)的檢測過程,而典型的2D輸入信息來自于照相機(jī)。

傳統(tǒng)2D物體檢測方法及缺點(diǎn)

  傳統(tǒng)的 2D 信息檢測方法是使用檢測框遍歷圖片,把對(duì)應(yīng)的圖片位置摳出來之后,進(jìn)行特征提取,用 Harris計(jì)算子檢測角點(diǎn)信息,Canny計(jì)算子檢測邊緣信息等。物體特征被提取并聚集在一起后,通過做分類器(比如SVM),我們可以判斷提取的圖中是否存在物體,以及物體的類別是什么。

  但傳統(tǒng) 2D 物體檢測方法存在不足:

  ● 檢測物體時(shí),需要預(yù)置檢測框,對(duì)不同物體需要設(shè)置不同的檢測框。

  ● 自動(dòng)駕駛需要高級(jí)的組合特征,而傳統(tǒng)方法提取的特征維度比較低,對(duì)后續(xù)的分類會(huì)造成比較大的影響。

基于深度學(xué)習(xí)的2D物體檢測

  卷積神經(jīng)網(wǎng)絡(luò)的出現(xiàn),解決了部分傳統(tǒng)2D物體檢測方法的不足。

  卷積神經(jīng)網(wǎng)絡(luò)首先是多層感知機(jī)加卷積操作的結(jié)合,它的特征提取能力非常不錯(cuò)。因?yàn)榫矸e神經(jīng)網(wǎng)絡(luò)經(jīng)常會(huì)有幾十、上百個(gè)卷積,使其具備高維特征提取能力。

  其次,通過 ROI pooling和RPN,整張圖可以共享同樣的特征,物體檢測時(shí)不用遍歷整張圖片,還可以在單次操作中對(duì)圖片中所有物體進(jìn)行檢測。這種檢測方法使物體檢測模型真正具備了應(yīng)用于實(shí)際場景中的性能。

  目前基于卷積神經(jīng)網(wǎng)絡(luò)的2D物體檢測有兩類分支:

  ◆ Anchor Based Methods:跟傳統(tǒng)方法比較類似,先預(yù)置檢測框,檢測過程則是對(duì)預(yù)設(shè)框的擬合過程。

  ● RCNN(fast,faster)

  ● SSD(DSSD)

  ● YOLO(v1,v2,v3)

  ● RetinaNET

  ◆ Anchor Free Methods:直接對(duì)照特征金字塔的每個(gè)位置,回歸對(duì)應(yīng)位置上,判斷物體是否存在、它的大小是多少等。這類方法是2018年底開始大量出現(xiàn)的,也是未來的一個(gè)發(fā)展方向。

  ● CornerNet

  ● FSAF

  ● FCOS

  這是路測場景中的一個(gè)真實(shí)檢測案例(上圖),2D 物體檢測已經(jīng)應(yīng)用于檢測路面上一些小物體。

  同時(shí)遠(yuǎn)距離物體檢測也是2D物體檢測中關(guān)注的重點(diǎn)。受限于激光雷達(dá)和毫米波雷達(dá)的物理特征,遠(yuǎn)距離物體缺乏良好的檢測效果,而照相機(jī)在這方面比較有優(yōu)勢(shì),可以和其他的檢測方法進(jìn)行互補(bǔ)。

2D物體檢測面臨的問題

  物體相互遮擋

  但是采用照相機(jī)做 2D 物體檢測不可避免要面臨一些問題。因?yàn)檎障鄼C(jī)回饋的圖像只有兩個(gè)維度,當(dāng)兩個(gè)物體堆疊時(shí),對(duì)一個(gè)神經(jīng)網(wǎng)絡(luò)而言,圖像的特征就比較聚集。

  一般做物體檢測的過程,會(huì)用一些非極大值抑制的方法,對(duì)檢測結(jié)果進(jìn)行后處理,當(dāng)特征結(jié)果非常密集的時(shí)候,這種方法往往會(huì)受到影響。

  成像質(zhì)量波動(dòng)

  照相機(jī)是可見光設(shè)備,因此會(huì)受到光照強(qiáng)度的影響,成像質(zhì)量出現(xiàn)波動(dòng)。但我們總是希望圖中的特征不管是在哪個(gè)位置,都能得到足夠的表達(dá)。

  例如,2D圖像中遠(yuǎn)處的車燈和路燈很難區(qū)分開,導(dǎo)致可能都被檢測為車或者路燈。在這種情況下,特征總會(huì)難以區(qū)分。

  測距

  另一個(gè)的問題就是測距問題。因?yàn)檎障鄼C(jī)是被動(dòng)光源的設(shè)備,它不具備主動(dòng)測距的能力。

  如果希望借助照相機(jī)進(jìn)行物體測距,就需要做很多的假設(shè)或者求解一些病態(tài)的數(shù)學(xué)問題,用以估算車與物體的距離。但這個(gè)結(jié)果通常不如主動(dòng)測距設(shè)備的結(jié)果,比如激光雷達(dá)和毫米波雷達(dá)。

三、3D物體檢測

  正是因?yàn)檎障鄼C(jī)存在上面提到的問題,所以我們物體檢測也使用了其他的傳感器,將它們的結(jié)果共同結(jié)合起來,最終達(dá)到更可靠的檢測效果。

  什么是3D物體檢測?

  3D物體檢測,顧名思義就是把3D的一些數(shù)據(jù)坐標(biāo),聚集起來進(jìn)行物體檢測。比如激光雷達(dá),類似于我們拿一支激光筆不斷掃描周圍,它會(huì)提供相對(duì)明顯的信息。當(dāng)把3D數(shù)據(jù)聚集起來之后,我們可以用來推測周圍物體的位置,大小,朝向等等。

  3D物體檢測一個(gè)很大的好處就是,我們?cè)?D物體檢測中很難區(qū)分的物體,有了3D數(shù)據(jù)提供的距離信息之后,將更容易從距離的維度上分開。這樣感知系統(tǒng)在進(jìn)行物體分割的時(shí)候能使用的信息更多,達(dá)到一個(gè)更好的工作效果。

傳統(tǒng)3D分割方法及限制

  傳統(tǒng)的 3D 分割方法包括:

  ● Flood Fill

  ● DB scan

  ● Graph Cut

  它主要是利用一些點(diǎn)的距離信息、密度信息或者點(diǎn)的一些天然屬性,比如它的強(qiáng)度,把物體聚類分割。

  傳統(tǒng)分割方法也存在不少限制,首先是過度分割。

  比如上圖中的異形車,由于車尾和車頭之間有縫隙,在 3D 檢測中,它可能會(huì)被分割成多個(gè)物體,因?yàn)辄c(diǎn)和點(diǎn)之間有間隙,在激光雷達(dá)檢測時(shí)呈現(xiàn)的是離散信息,就會(huì)出現(xiàn)過度分割。

  傳統(tǒng)分割方法的另一個(gè)問題是分割不足。

  我們將上圖出現(xiàn)的情況稱為“三人成車”,就是當(dāng)三個(gè)人離的很近的時(shí)候,有可能被傳統(tǒng)分割方法識(shí)別成一輛車。

基于深度學(xué)習(xí)的3D分割方法

  當(dāng)深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)引入到 3D 物體檢測中時(shí),我們發(fā)現(xiàn)傳統(tǒng)3D分割方法遇到的問題得到較好解決。

  首先讓點(diǎn)云信息進(jìn)行特征工程,即將點(diǎn)的位置、反射強(qiáng)度、高級(jí)特征聚合在一起,組織成類似圖片或者圖的關(guān)系。隨后進(jìn)行卷積神經(jīng)網(wǎng)絡(luò)特征提取,再進(jìn)行多幀特征的聚合(它的意義是對(duì)運(yùn)動(dòng)的物體有一個(gè)更好的反映),最后輸出物體的位置、聚類信息、物體速度。

  通過上述深度學(xué)習(xí)方法,“三人成車”的情況得到避免。系統(tǒng)不僅可以提取人的距離關(guān)系,還可以提取到更多的高級(jí)信息,比如在點(diǎn)云變化中,人類的點(diǎn)云形似長的柱體,而自行車類似于小山一樣的點(diǎn)云分布,這樣感知系統(tǒng)可以了解這些障礙物不屬于同一物體,而將其割離開。

深度學(xué)習(xí)3D分割方法的限制

  另一方面,我們也要認(rèn)識(shí)到深度學(xué)習(xí)分割方法也可能面對(duì)的挑戰(zhàn)。

  ◆ 結(jié)果的不完全可控:首先卷積神經(jīng)網(wǎng)絡(luò)經(jīng)常有幾百層的卷積層,參數(shù)總量可能有百萬級(jí),并且是自動(dòng)學(xué)習(xí)的,這可能會(huì)導(dǎo)致對(duì)網(wǎng)絡(luò)的輸出缺少把控。換句話說,系統(tǒng)無法預(yù)期數(shù)據(jù)輸入(input)后會(huì)得到怎樣的數(shù)據(jù)輸出,于自動(dòng)駕駛而言,這是比較致命的。因?yàn)樽詣?dòng)駕駛對(duì)場景的召回率和精度有非常高要求,如果車輛在行駛中,前面的一位行人miss(丟失),這是極其嚴(yán)重的隱患。

  ◆ 無法保證100%的召回(recall):如上圖所示,垃圾桶和行人的特征其實(shí)非常相似,那么深度學(xué)習(xí)可能會(huì)出現(xiàn)把人學(xué)成了垃圾桶,最后導(dǎo)致行人在感知系統(tǒng)中出現(xiàn)丟失的情況。

  ◆ 易導(dǎo)致過擬合:由于卷積神經(jīng)網(wǎng)絡(luò)有非常好的特征提取能力,固定的數(shù)據(jù)集訓(xùn)練可能導(dǎo)致神經(jīng)網(wǎng)絡(luò)過擬合。例如同樣的數(shù)據(jù)集訓(xùn)練后,在北京路測的表現(xiàn)很好,但是當(dāng)?shù)竭_(dá)一個(gè)新的城市進(jìn)行測試時(shí),因?yàn)槁访嫣卣骱捅本┯兴鶇^(qū)別,可能導(dǎo)致物體分割效果下降,這對(duì)感知系統(tǒng)非常不友好。

  優(yōu)點(diǎn)兼得:傳統(tǒng)方法和深度學(xué)習(xí)方法的結(jié)合

  為了解決分割方法的限制,我們的想法是將傳統(tǒng)方法和深度學(xué)習(xí)方法的結(jié)果進(jìn)行結(jié)合:

  ◆ 使用深度學(xué)習(xí)的分割結(jié)果調(diào)整傳統(tǒng)分割方法的結(jié)果。

  ◆ 使用傳統(tǒng)分割方法的結(jié)果補(bǔ)足深度學(xué)習(xí)結(jié)果的召回。

  ◆ 基于多幀追蹤的概率模型融合:比如利用馬爾可夫分布的特點(diǎn)、貝葉斯的方法對(duì)多幀數(shù)據(jù)進(jìn)行一定的平滑,以得到更好的效果。

  通過傳統(tǒng)方法和深度學(xué)習(xí)方法的相互結(jié)合與補(bǔ)充,我們最終可以實(shí)現(xiàn)優(yōu)點(diǎn)兼具的物體檢測策略。

  做自動(dòng)駕駛真的是一個(gè)很崎嶇的旅程,不斷的解決問題之后又出現(xiàn)新的問題,不過正是因?yàn)檫^程的艱難,才帶來更多的快樂。

  來源 :小馬智行第二場技術(shù)沙龍

(轉(zhuǎn)載)

標(biāo)簽:智能駕駛 自動(dòng)駕駛 我要反饋 
泰科電子ECK、ECP系列高壓直流接觸器白皮書下載
ABB協(xié)作機(jī)器人,自動(dòng)化從未如此簡單
優(yōu)傲機(jī)器人下載中心
2024全景工博會(huì)
專題報(bào)道
2023-2024 智能·零碳成果展映
2023-2024 智能·零碳成果展映

“2023-2024智能·零碳成果展映”展示國內(nèi)外企業(yè)推進(jìn)“雙碳”實(shí)踐的最新成果,鼓勵(lì)更多企業(yè)、科研機(jī)構(gòu)、投資機(jī)構(gòu)等廣泛... [更多]

中國國際進(jìn)口博覽會(huì)
中國國際進(jìn)口博覽會(huì)

11月5日至10日,第七屆中國國際進(jìn)口博覽會(huì)在國家會(huì)展中心(上海)舉行。152個(gè)國家、地區(qū)和國際組織,近3500家參展企... [更多]

2024 工博會(huì) | 直播探館 · 全景解讀
2024 工博會(huì) | 直播探館 · 全景解讀

第二十四屆中國工博會(huì)于9月24日至28日在國家會(huì)展中心(上海)舉行,展會(huì)以“工業(yè)聚能 新質(zhì)領(lǐng)航”為全新主題。 [更多]