siemens x
技術(shù)

西門子VDO :模擬制造動系統(tǒng)最壞的情況

2025China.cn   2009年01月05日

電子楔制動器(仿真)是一種線控制動系統(tǒng),系統(tǒng)內(nèi)干器在每個車輪。 強(qiáng)勁的自我強(qiáng)化造成的楔形原則導(dǎo)致比較低功耗驅(qū)動器,因此,該系統(tǒng)不受至42 V技術(shù)。 附加主要優(yōu)點相比傳統(tǒng)液壓制動系統(tǒng)動力學(xué)較高,導(dǎo)致制動距離短,減少空間的需求,個性化的剎車踏板的感覺,延長診斷的可能性等。電氣制動系統(tǒng)也帶來了特別的挑戰(zhàn)安全工程的系統(tǒng)已經(jīng)投入運行的情況下單一故障,絕不能導(dǎo)致一個危險的局勢在這種情況下。特別的重點是放在兩個危險的情況下不受歡迎的制動和剎車力不足,在一個或多個車輪。 剎車一旦不受歡迎的檢測,故障沉默機(jī)制被激活相應(yīng)的驅(qū)動器,完全釋放剎車就這個車輪。

The strong self-reinforcement resulting from the wedge principle leads to comparatively low power consumption of the actuators and hence, the system is not bound to 42 V technology. Additional major advantages as compared to conventional hydraulic brake systems are higher dynamics leading to shorter braking distance, reduced space requirements, personalization of the brake pedal feel, extended diagnostic possibilities and others. An electrical brake system also poses special challenges to safety engineering as the system has to be operational in case of a single fault and must not lead to a dangerous situation in this case. Special focus has to be put on the two dangerous cases of undesired braking and on insufficient brake force at one or more wheels.Once undesired braking is detected, a fail-silent-mechanism is activated in the corresponding actuator that completely releases the brake on this wheel.

為了提供安全功能的制動系統(tǒng),制動沖擊故障的車輛動力學(xué)和可控性的司機(jī)必須了解和交代。 在模擬駕駛情況進(jìn)行了評價,其中故障產(chǎn)生最嚴(yán)重的負(fù)面影響,抵制措施已經(jīng)制定出來。作為一個例子,如制動不良,討論與激活失敗沉默機(jī)制,楔形制動單元。 其次,一些結(jié)果制動不足有關(guān),而駕駛的曲線高速。

To provide functional safety of the braking system, the impact of brake malfunctions on vehicle dynamics and controllability by the driver must be known and accounted for.In simulations, driving situations have been evaluated, in which malfunctions have the most negative effects, and counteracting measures have been developed. As an example, the case of undesired braking is discussed with activation of the fail-silent mechanism at the wedge brake unit.Secondly, some results are presented concerning insufficient braking while driving in a curve at high speed.

不受歡迎的制動術(shù)語“不受歡迎的剎車”用在這里的含義是測量剎車力的車輪單位顯著高于相應(yīng)的剎車力的需求(大約講“ 30 % ) 。 從功能安全的角度的一個重要問題是如何快速的失敗保持沉默的機(jī)制是有效的。一些模擬結(jié)果表明在這里回答這個問題。

1. 1 。 Undesired braking The term "undesired braking" is used here with the meaning that the measured brake force on a wheel unit is significantly higher than the corresponding brake force demand (roughly speaking > 30 %).From functional safety point of view an important question is how fast the fail-silent mechanism has to be effective. Some simulation results are shown here to answer this question.

對于模擬,商業(yè)軟件汽車制造商的汽車公司IPG集團(tuán)( IPG集團(tuán)汽車公司, Bannwaldallee 60 , 76185 Karlsruhe ,德國, . )和Matlab的Simulink ( MathWorks公司公司, 3個蘋果希爾道,美國馬薩諸塞州Natick 01760 -2098 , )的使用。該剎車力控制器的試驗車輛和模型的楔形剎車器已被納入仿真為基礎(chǔ)的框架內(nèi),汽車制造商。 此外, “梯度驅(qū)動” ,即司機(jī)在汽車模型,控制方向盤角度彎曲的后續(xù)跟蹤。 駕駛情況如下:汽車駕駛的圓形軌道半徑R = 250米,逆時針的方向,摩擦系數(shù)是μ = 1.0和速度比為120公里/小時 經(jīng)過15語一個不受歡迎的發(fā)生制動剎車力的40千牛頓攔截一個或多個車輪完全。經(jīng)過一段時間ΔT場= ( 50 , 100 , 250 , 500毫秒)的失效安全機(jī)制有缺陷的車輪單位啟動和剎車力變成零。 的影響制動脈沖對車輛動力學(xué)和司機(jī)的指導(dǎo)活動取決于脈沖長度ΔT場進(jìn)行了調(diào)查。

For the simulations, the commercial software CarMaker of IPG Automotive GmbH (IPG Automotive GmbH, Bannwaldallee 60, 76185 Karlsruhe, Germany, .) and Matlab Simulink (The MathWorks Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, ) are used. The brake force controllers of our test vehicles and a model of the wedge brake actuator have been integrated into the Simulink-based framework of CarMaker.Furthermore, the "IPG-DRIVER", ie the driver model in CarMaker, controls the steering wheel angle to follow the curved track.The driving scenario is as follows: The car is driving on a circular track with radius r=250 m in counter-clockwise direction, the coefficient of friction is μ=1.0 and the velocity is v=120 km/h.After 15 s an undesired braking occurs with a brake force of 40 kN blocking one or more wheels completely. After an additional period of time ΔT= {50, 100, 250, 500 ms} the fail-safe mechanism of the defective wheel unit is activated and the brake force becomes zero.The effects of the braking pulse on vehicle dynamics and on the driver's steering activity depending on the pulse length ΔT have been investigated.

故障可能發(fā)生在一個或多個車輪。引用14個不同的案件的故障,一個簡單的方法,下面的語法為: 0的數(shù)目是“沒有故障”和1號的故障相應(yīng)的車輪。在這一章中,故障是一個不受歡迎的制動和下一章制動不足。這四個輪子列在連續(xù)的順序為:前左,前右,后左,后方的權(quán)利。 例如,在兩個案件0101故障發(fā)生在同一時間,即在前線和后方的權(quán)利,有權(quán)車輪。的討論,不同的信號和數(shù)量已經(jīng)評估和計算,例如,橫向之間的距離車輛的重心,中間車道,行車時間點,距離車道過境,偏航率,側(cè)滑角,方向盤角度和他們的積分和梯度。在這里,一些例子和臨界狀態(tài)的討論依賴類型的故障和ΔT場。

A malfunction can occur on one or more wheels. To reference the 14 different cases of malfunctions in a simple way, the following syntax is used: The number 0 stands for "no malfunction" and the number 1 for a malfunction on the corresponding wheel. In this chapter, the malfunction is an undesired braking and in the next chapter an insufficient braking. The four wheels are listed in consecutive order: front-left, front-right, rear-left and rear-right.For example, in case 0101 two malfunctions occur at the same time, namely on the front-right and rear-right wheels. For the discussion, different signals and quantities have been evaluated and calculated, eg lateral distance between vehicle's center of gravity to the middle of lane, time to lane crossing, distance to lane crossing, yaw rate, sideslip angle, steering wheel angle and their integrals and gradients. Here, some examples and the criticality are discussed in dependence of the type of malfunction and ΔT.

圖1顯示的橫向距離為ΔT場= 250毫秒(頂端)和50毫秒(底部) 。為ΔT場= 250 ms和案件0011和1011的驅(qū)動程序無法保持汽車的弧形軌道。 在案件1101和1100 ,最高橫向距離大于1.5米,車輛離開車道(汽車假定中間的車道在t = 15 s和內(nèi)線寬度為3米) 。在其余的盲目情況下,車輛仍然線。為ΔT場= 50毫秒的車輛暫時離開車道只有在1011 。 這起案件的可能性很小,因為3月發(fā)生故障必須在同一時間。
Figure 1 shows the lateral distance for ΔT = 250 ms (top) and 50 ms (bottom). For ΔT = 250 ms and the cases 0011 and 1011 the driver is not able to keep the car on the curved track.In cases 1101 and 1100, the maximum lateral distance is larger than 1.5 m and the vehicle leaves the lane (The car is assumed to be in the middle of the lane at t=15 s and the lane width is 3 m). In the remaining uncritical cases, the vehicle remains in lane. For ΔT = 50 ms the vehicle temporarily leaves the lane only in the case 1011.This case is very unlikely because 3 malfunctions must happen at the same time.


lateral distance after undesired braking and fail silent (250 ms) 橫向距離后制動不良,不能保持沉默( 250毫秒)
at t=15 (v=120 km/h) 在t = 15 (五= 120公里/小時)



lateral distance after undesired braking and fail silent (50 ms) 橫向距離后制動不良,不能保持沉默( 50毫秒)
at t=15 (v=120 km/h) 在t = 15 (五= 120公里/小時)

Figure 1: Lateral distance after undesired braking for ΔT = 250 ms and 50 ms 圖1 :橫向距離后制動不良的ΔT場= 250毫秒和50毫秒


圖2顯示了偏航率最高內(nèi)發(fā)生的第一個5秒后制動不良。顯然,最大的偏航率下降,下降ΔT場。 減少是重要的,除非案件中,車輪與內(nèi)非常小的車輪荷載的影響( 1000 , 0010 ) 。 第二個價值圖2是不可分割的側(cè)滑角率首次超過5秒后開始的不受歡迎的剎車。案件中,車離開車道被排除。 積分的側(cè)滑角率取決于強(qiáng)烈的價值ΔT場,是一個良好指標(biāo)的重要性不受歡迎的制動方面偏離車道。這兩個動畫和提到的情況與ΔT場一千○一十〇 = 250 ms和ΔT場= 500毫秒。 圖2 :最大偏航率和積分的側(cè)滑角率為不受歡迎的制動(在底部圖,案件中,汽車離開車道被排除)

Figure 2 shows the maximum yaw rate occurring within the first 5 seconds after undesired braking. Evidently, the maximum yaw rate decreases with decreasing ΔT.
The decrease is significant except in cases in which inside wheels with very small wheel loads are affected (1000, 0010).The second value in Figure 2 is the integral of sideslip angle rate over the first 5 seconds after begin of undesired braking. Cases in which the car leaves the lane are left out.The integral of sideslip angle rate depends strongly on the value ΔT and is a good indicator for the criticality of undesired braking with respect to lane departure. The two animations and refer to the case 1010 with ΔT = 250 ms and ΔT = 500 ms.Figure 2: Maximum yaw rate and integral of sideslip angle rate for undesired braking (In the bottom diagram, cases in which the car leaves the lane are left out)


The controllability of undesired braking can roughly be classified 可控的不受歡迎的制動可以大致分為
as shown in table 1: 如表1所示:

50 ms 50毫秒 100 ms 100毫秒 250 ms 250毫秒 500 ms 500毫秒 Remarks 備注
controllable 可控 all except 1011所有除第1011 all except 1011所有除第1011 0100, 0001, 0110, 0101, 1101, 0111, 1000, 0010, 1001, 1010 0100 , 0001 , 0110 , 0101 , 1101 , 0111 , 1000 , 0010 , 1001 , 1010 0100, 0001, 0110, 1000, 0010 0100 , 0001 , 0110 , 1000 , 0010 The IPG-DRIVER is able to bring the vehicle back to center of lane without lane departure (max. lateral distance < 1.5 m) IPG集團(tuán)的車手也能夠使車輛回到中心的車道沒有偏離車道(最大橫向距離“ 1.5米)
critical 關(guān)鍵 1011 1011 1101, 1100 1101年, 1100 1101, 1100, 0101, 0111, 1110, 1010 1101 , 1100 , 0101 , 0111 , 1110 , 1010 The vehicle leaves the own lane but not the road (1.5 m < max. lateral distance < 6 m).車輛離開自己的車道而不是公路( 1.5米“最多。橫向距離” 6米) 。 In simulations, the vehicle returns to center of lane.在模擬試驗,車輛返回到中心的車道。
not controllable 不可控 none毫無 none毫無 0011,1011 0011, 1011, 1001 0011 , 1011 , 1001 The vehicle leaves the own lane and road (max. lateral distance > 6 m).車輛離開自己的車道和公路(最大橫向距離“ 6米) 。 IPG-DRIVER is not able to bring the vehicle back to center of lane. IPG集團(tuán)司機(jī)無法使車輛回到中心的車道。
Table 1: Classification of controllability of undesired braking 表1 :分類可控性不良制動

總之,價值ΔT場應(yīng)盡可能低,以避免負(fù)面影響車輛動態(tài)。用一切手段,其價值ΔT場應(yīng)低于100毫秒。然而,可取的做法是ΔT場= 50毫秒或更低獲得較低的偏航率,側(cè)滑角率和方向盤角度(未顯示) 。In summary, the value ΔT should be as low as possible to avoid negative effects on vehicle dynamics.  By all means, the value ΔT should be lower than 100 ms. However, it is preferable to have ΔT=50 ms or lower to get lower yaw rates, side slip angle rates and steering wheel angles (not shown).

2. 2 。 不足的制動在第二的情況下,駕駛賽車在同一軌道彎曲在上一節(jié)與V =一百二十○公里每小時逆時針。與此相反的前款,更高的制動功能(按ESC包括: ABS )可用。當(dāng)司機(jī)進(jìn)行全面制動,共損失制動性能的一個或多個車輪發(fā)生。 例如,在0110例,制動力量仍然是零的右前方和后方離開方向盤。 Insufficient braking In the second scenario, the car is driving on the same curved track as in the previous section with v=120 km/h counter-clockwise. In contrast to the previous paragraph, higher brake functions (ESC including ABS) are available. When the driver performs a full braking, a total loss of brake performance on one or more wheels occurs.For example in case 0110, the brake force remains zero on the front right and rear left wheel.

lateral distance to center of lane after insufficient braking 橫向距離中心的車道后,制動不足
at t=15 (v=120 km/h) 在t = 15 (五= 120公里/小時)


yaw rate after insufficient braking at t=15 (v=120 km/h) 偏航率不足,制動后在t = 15 (五= 120公里/小時)

Figure 3: Lateral distance and yaw rate after insufficient braking 圖3 :橫向距離和偏航率不足后制動

In addition to lateral distance and yaw rate (figure 3), the changes of sideslip and steering wheel angles over the first 5 seconds of insufficient braking are suitable measures of the controllability of the vehicle (figure 4, table 2).除了橫向距離和偏航率(圖3 ) ,變化的側(cè)滑和方向盤角度的頭5秒的不足是合適的制動措施的可控性的車輛(圖4 ,表2 ) 。


Figure 4: Integral of sideslip angle and steering wheel angle rate after insufficient braking 圖4 :積分側(cè)滑的角度和方向盤角率不足后制動

Controllability 可控 Cases Remarks 備注
less critical 同樣重要 1100, 1000, 1001 1100 , 1000,1001 small yaw rate, little steering activity小偏航率,很少指導(dǎo)活動
critical 關(guān)鍵 0110, 0011, 1101, 0111, 0010, 1110, 1011, 1010 0110 , 0011 , 1101 , 0111 , 0010 , 1110 , 1011 , 1010 max.最大值。 lateral distance < 0.3 m, max.橫向距離“ 0.3米,最大。 yaw rate < 12 deg/s偏航率“ 12度/秒
highly critical 高度危急 0100, 0001, 0101 0100 , 0001 , 0101 max.最大值。 lateral distance > 0.3 m, max.橫向距離“ 0.3米,最大。 yaw rate > 12 deg/s, high steering activity and sideslip angle rate偏航率“ 12度/秒,高指導(dǎo)活動和側(cè)滑角率
Table 2: Classification of controllability of insufficient braking 表2 :分類可控性不足,制動

.仿真上面所討論的意外制動和制動不足,目前正在繼續(xù)覆蓋了廣泛的目錄駕駛的情況。結(jié)果這些模擬和相應(yīng)的車輛試驗有助于找到適當(dāng)?shù)囊?guī)范,安全管理措施的剎車制動裝置和設(shè)計穩(wěn)定的職能在中央車輛控制的水平。.這些措施的成效將首先在模擬測試的同一類型,其中減少的努力,隨后的車輛試驗。
The simulations discussed above for unintended braking and insufficient braking are currently continued to cover an extensive catalogue of driving situationsThe results of these simulations and corresponding vehicle tests help to find appropriate specifications for safety measures in the brake actuators and to design stabilizing functions on a central vehicle control level. The effectiveness of these measures will first be tested in simulations of the same kind, which reduce the effort of subsequent vehicle tests
Dr. Martin Pellkofer 馬丁Pellkofer
Siemens VDO Automotive西門子威迪歐汽車
University education:大學(xué)教育:
1992-1997: Studies of physics (diploma) at the University of Regensburg, Germany. 1992-1997年:研究物理學(xué)(文憑)在雷根斯堡大學(xué),德國。
1997-2002: PhD in the field of Active Vision and decision making for autonomous vehicles. 1997-2002年:博士領(lǐng)域的主動視覺和決策的自主車輛。
Professional activities:專業(yè)活動:
Since 2002: Development engineer at Siemens VDO, Domain Chassis.自2002年以來:開發(fā)工程師西門子VDO ,網(wǎng)域底盤。 Current field of work: Algorithm development in the areas vehicle dynamics and functional safety.當(dāng)前的工作領(lǐng)域:算法發(fā)展領(lǐng)域車輛動力學(xué)和功能安全。
Dr. Andreas Mayer 安德烈博士梅耶
Siemens VDO Automotive西門子威迪歐汽車
University education:大學(xué)教育:
1977-1983: Studies of physics and mathematics at the University of Münster, Germany. 1977至83年:研究物理和數(shù)學(xué)大學(xué)的Münster ,德國。
1983: Diploma in Physics 1983年:在物理文憑
1985: PhD in solid state physics at the University of Münster 1985年:博士在固體物理學(xué)在明斯特大學(xué)
Professional activities:專業(yè)活動:
1986-1991: Research on various topics in solid state physics and nonlinear optics at universities in Italy, Germany, USA and the UK. 1986-1991年:研究各種議題的固體物理和非線性光學(xué)大學(xué)在意大利,德國,美國和英國。
1991-2002: Lecturer at the University of Regensburg, Germany 1991-2002年:講師雷根斯堡大學(xué),德國
Since 2002: Development engineer at Siemens VDO, Domain Chassis.自2002年以來:開發(fā)工程師西門子VDO ,網(wǎng)域底盤。 Field of work: Algorithm development in the areas vehicle dynamics and sensor systems.外勤工作:算法發(fā)展領(lǐng)域車輛動力學(xué)和傳感器系統(tǒng)。


Author(s): Dr. 作者(星期日) : 博士 Martin Pellkofer and Dr. Andreas Mayer 馬丁Pellkofer和安德烈博士梅耶

(轉(zhuǎn)載)

標(biāo)簽:制造動系統(tǒng) 我要反饋 
2024世界人工智能大會專題
即刻點擊并下載ABB資料,好禮贏不停~
優(yōu)傲機(jī)器人下載中心
西克
2024全景工博會
專題報道
2024 工博會 | 直播探館 · 全景解讀
2024 工博會 | 直播探館 · 全景解讀

第二十四屆中國工博會于9月24日至28日在國家會展中心(上海)舉行,展會以“工業(yè)聚能 新質(zhì)領(lǐng)航”為全新主題。 [更多]

2024世界人工智能大會
2024世界人工智能大會

WAIC 2024將于7月在上海舉行,論壇時間7月4日-6日,展覽時間7月4日-7日。WAIC 2024將圍繞“以共商促... [更多]

2024漢諾威工業(yè)博覽會專題
2024漢諾威工業(yè)博覽會專題

2024 漢諾威工業(yè)博覽會將于4月22 - 26日在德國漢諾威展覽中心舉行。作為全球首屈一指的工業(yè)貿(mào)易展覽會,本屆展覽會... [更多]